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Let L be an arbitrary quasidisk, and f analytic in G and continuous on G. We
prove two theorems establishing a connection between the sequence of values
E.U, G), n = I, 2, .,., of best uniform polynomial approximations of the function f
on G and its smoothness properties on the boundary aGo Then we apply one of
these results to the solution of a problem suggested by Turan concerning the
correlation between polynomial and rational approximations on the unit disk.
In 1993 Academic Press, Inc.

1. INTRODUCTION

This paper is connected with the study of the values E" (f, G),
n = 0, 1,2, ... , of best uniform polynomial approximations of a function f
analytic in a bounded Jordan domain G c iC and continuous on its
closure G.

The rate of decrease of E,,(f, G) as n --> 00, the geometric structure of the
boundary 8G of G, and the smoothness of the function f near the boundary
interact in a complicated way.

The main subject of our paper is the consideration of the following two
problems.

Let Il(b), 15>0, be a so-called normal majorant (for example, Il(b)=b',
c = const > 0).

PROBLEM A. Describe all functions f satisfying

as n --> 00. (1.1 )

PROBLEM B. Describe all functions f for which

n= 1,2, ..., (1.2 )
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where the symbol g'" q> means that
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holds lor some constant c > O.

Problem A is a typical problem in approximation theory. One can find
a complete survey of results obtained in this direction in [6-9, 3].

Problem B is initiated by some similar results of Stechkin [12] con
cerning the approximation of real functions.

We give the solution of Problems A and B in the case when G is an
arbitrary quasidisk [1] and apply then these results to the study of a
problem of Turan concerning the correlation between polynomial and
rational approximations on the unit disk.

2. DEFINITIONS AND MAIN RESULTS

Let K be an arbitrary compact set in the complex plane C We denote
by A(K) the class of all functions continuous on K and analytic in its
interior. Let lPn' n = 0, 1, ..., be the class of all polynomials of degree at
most n. For IEA(K), ZEC, 15>0, n=O, 1, ..., and an integer m~ 1 put

III11 K:= sup{ I/(z)l, Z E K},

En(f, K) := inf{ III- pil K' p E IP n},

D(z, 15):= g: I( -zi <J}, D :=D(O, 1),

d(z, K) := inf{ I( - zl, ( E K},

Wm. K(f, Z, 15):= Em- 1(f, KnD(z, 15».

Let G c C be an arbitrary bounded quasidisk [1] with complement D :=
C\K, and let L = aG = aD be their common boundary (hence L is a
quasicircle). We recall that a geometric test for the quasiconformality of L
is as follows: L is a quasicircle if and only if it is a Jordan curve and there
exists a constant c ~ 1 such that for each pair of points z I' Z 2 E L

min diam(Yj)~c IZI-z21,
j~ 1,2

where YI and Y2 are the components of L\{ZI,Z2}'
We denote by w = $(z) the function that maps Q conformally onto

A:={w: Iwl>l} with the normalization $(00)=00, ct>'(oo) >0. We
extend $ continuously on Q, retaining the notation ct> for the extended
function, and denote the inverse function by If':= $" 1
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For an integer m ~ 1 we consider the following characteristic of the
smoothness properties of a function f on L or, more exactly, of the function
](11') :=f[ tp(I1')J on {11': 111'1 = 1 ] = aLl:

w",(o):=sup{E", 1(f,tp(J,)),}'caLl,I}'I~o}, 0>0,

where y c aLl is an arbitrary are, II'I is its length.
When G = D, w",(o) is equivalent to the mth modulus of continuity of

the function f on aG (see more precisely [13, 6J).
We note also that WI(O) is simply equivalent to the usual modulus of

continuity of a function] on eLl.
We use (', ('I' .. , to denote positive constants (in general, different in

different relations), depending, unless the contrary is explicitly stated, only
on G or other inessential quantities.

Following [13J, we call a function J1(0) a normal majorant if it is
defined, finite, positive, and nondecreasing for 0> 0 and satisfies

t ~ I, b >0. (2.1 )

For example, the function J1(0) = CI 0' is a normal majorant.
For convenience of formulation of our results we assume, without loss of

generality, that

lim J1( 0) = 0;
i>- +0

THEOREM 1. Let G be a quasidisk, J1 a normal majorant, fE A(G). In
order that (1.1) holds it is necessary for all sufficiently large m ~ mo( 11, G)
and sufficient for some m ~ I that

as 0 ~ O.

Remark. According to Theorem I and Lemma 3 inequality

n= 1, 2, ... (2.2)

holds for all integers m ~ 1, where c = c( G, m).

In the majority of known results of this kind the particular case of (2.2)
for m = 1 is most popular.

Unfortunately, the example of function f(z) = z and domain

G = G~ := {z = re iOn: 0 < r < I, a/2 < () < 2 J, O<a< 1,
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shows that even the condition E,,(/, G) = 0 for n ~ 1 is not sufficient in
order to assert that wl (l5) = 0(15') as 15 -> O.

This fact, in particular, explains the role of the quantity wm ( 15) because
the transition from m = 1 to an arbitrary m ~ 1 gives us the possibility to
obtain the description of functions with property (1.1 ).

THEOREM 2. Let G he a quasidisk, J1 a normal majorant, f E A (G). /n
order that (1.2) holds it is necessary and sufficient that

holds for all sufficiently large m ~ mo(J1, G).

15>0 (2.3 )

Theorem 2 can be applied to the solution of the following problem of
Turan [14, Problem LXXXVII; 11, p. 363].

Denote by B the class of all functions f E A(15) which cannot be con
tinued analytically beyond iJD. Let p,,(f, 15), n = 0, 1, ..., be the best uniform
approximation of the function f on 15 by rational functions of the form
R,,(z) :=P,,(z)/q,,(z), where P", q"E IP n •

Turan has asked whether it is true that there is no fo E B such that
E,,(fo, 15)~cl/n, but p,,(fo, 15)~exp{ - c2n I/

2} for n= 1, 2, ....
We give the negative answer on this question and even prove a stronger

result.

THEOREM 3. For any cc 0< a < 1 there is a function g = g x E B such that

E,,(g, 15) ~ c1n-',

p,,(g,15)~exp{-C2nl/2},

(2.4 )

(2.5 )

where C j= cj(a), i= 1, 2.

We note that similar problems of rational approximation of analytic
functions on compact sets of the complex plane were studied in [to].
There one can also find a survey of such results.

We use the notation a ~ h to denote that a ~ ch.

3. LOCAL PROPERTIES OF THE CONFORMAL MAPPINGS I/J AND 'I'

In this section we recall some results from [1, 2, 4] that will be needed
below.

Mappings </J and 'I' can be extended to quasiconformal mappings of the
whole complex plane on itself. Consequently, according to [2, Lemma 1]
we can formulate the following assertion.
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LEMMA I. For any three points (i E Q, j = 1,2, 3, the conditions
I( I - (21 ~ I( I - (3 I and IIt' I - It' 21 ~ IIt' I - w31, where wi := cf>( (i)' j = 1, 2, 3,
are equivalent and provide the inequalities

with some constants f3 > rJ. > 0 depending only on L.

In the following we use without proof some geometrical facts which
follow easily from Lemma 1. We formulate one of them (see, for example,
[3, Lemma 2]).

For arbitrary u> 0 and Z E C we put

L 1 + u := g: 1cf>(OI = I +u},

Pu(z):= d(z, L 1 +J.

LEMMA 2. Let u> v > O. Then for Z E L

( u)~ Pu(z) (U)/i
- ~--. ~ -
V p,,(z) v

hold~, where rJ. and f3 are constants from Lemma 1.

4. PROOF OF THEOREM 1

To begin with let us establish the following assertion.

LEMMA 3. For all fE A(G) and m ~ 1 the function wm(J) is a normal
majorant.

Proof It is obvious that the fulfillment of the condition (2.1) is only
nontrivial. Let 0 < J < 2n, t ~ I, and let i' c aD be an arc for which

II'I ~ tJ.

Without loss of generality we can assume that II'I > J. Denote by 1'1'
1'2' ... , Yk the system of arcs with the following properties:

(i) Uk ."f = i~ J "fj'

(ii) <5/2~ IYi l ~J,j= T,k;
(iii) IYi n I'j+ I I~ <5/2, j ="1,'k'----;-I;

(iv) k~t.
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We put 1:= 'l'(y), Ij := 'l'(Yj)' j= 1, k. Choose j and let p;(z) =
Pj (z,f, m) E IP m _ 1 be a polynomial such that

Consider the polynomial qj(z) :=P;+I(Z)-Pj(z), For zE/inl/+ 1 we
have

On arc }'j n Yj + lone can construct the system of points WI' ..., Wm
according to the following rule.

(i) If m = I, then WI E Yj n Yj+ I is an arbitrary point.

(ii) If m> I, then WI and W m are end points of the arc Yj n}'1+ I and
the other points are defined by

i=l,m-l.

By Lemma I the set of points Zj:= 'l'(wJ satisfies for all i, s= I, m, ii's

IZ j - z, I '" diam Ij '" diam I; + I ,

and for each point Z E I

I
Z-Zs I /tP(Z)-w., 1(3 {I-- ~I+ ~t.
Z"-Zs W,.-W.fi

By virtue of inequality (4.1 ) and the Lagranges interpolation formula

m

1t j (Z) = n (z-z,)
s= 1
.f; '# i

we successively obtain for Z E I

m

Iqj(z)l~wm(c5) L t(3(m-
'
l",t{l(m-l)wm (c5)·

i= J

Therefore, if Z E Ij , then

;-1

If(z)-Pl(Z)1 ~ If(z)-p;(z)1 + L Iq;(z)1 ~jtfl(m llwm (c5)
i= I
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Consequently,

w",(tb)=E", IU;I):::::llf-PIIII~tfl(m ()+l wm(b),

i.e., inequality (2.1 ) is satisfied for the function w",( b) with c = {J(m - I ) + l.
Now let r(z, h), z E L, h ~ 0, be a function defined by the identity

Pr(=.hl(z)=h.

Let z E L be an arbitrary point, It' := c/>(z), and let }' c oJ be an arc such
that WE r, Irl = h, 0 < h < 2n. Denote by Po E IP m _ I the polynomial for
which

Reasoning like in the proof of inequality (4.2) one can obtain for' E L

{

w",[r(Z,h)],

If(O-Po(OI~ - [(7!)][c/>(O-c/>(Z))]'
W m r -, 1 r(z, h) ,

I(-zl:::::h;

I( - zl > h.
(4.3 )

Using in the case I( - zl > h the estimates

Ic/>(O -: c/>(z) I~·I c/>(~) - c/>(z} I~ I,- Z IIi>,
r(_, h) c/>(~h) - c/>(_) h

where Zh is an arbitrary point of the intersection DD(z, h) (\ Q we can write
(4.3) in the form

If(O - Po(OI ~ w",[r(z, h)] (I + Iz ~ Zo 1'/», (E L.

By a result of Tamrazov (see, for example, [7, p. 425]) we have

W",. eLf, z, h) := E", It; D(z, h) (\ G) ~ W'" [r(z, h)]. (4.4)

To complete the proof of Theorem I it is sufficient to use a slightly
modified version of the description of function classes with property (I.I)
suggested in [3].

We confine ourselves to the formulation of this assertion for quasidisks
only.

LEMMA 4. Let G he a quasidisk, fl a normal majorant,f E A( G). In order
that (l.l) holds it is necessary for all sufficientZv large m ~ m o(fl, G) and
sufficient for some m ~ 1 that

W",. eLf, z, h) ~ fl[r(z, h)]

holds for all z ELand h > O.
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5. PROOF OF THEOREM 2
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We have to establish for sufficiently large m the equivalence of the
following two double inequalities

CJI.1( lin) ~ En(f, G) ~ C 2 ~(t/n),

c3 ~(b) ~ wm(b) ~ c4~(b),

n= 1,2, ...,

b>O.

(5.1 )

(5.2)

Let (5.1) be true. The correctness of the right-hand part of (5.2) for
sufficiently large m follows from Theorem 1. For 0 <!J < I, choosing integer
n such that (n + 1) - 1 ~ b < n - I, we have by Lemma 3 and inequality (2.2)

Hence the correctness of the left-hand part of (5.2) is proved (even for all
m~ I).

Now let (5.2) be satisfied. The right-hand part of the inequality (5.1)
follows from Theorem I. Let us verify the correctness of the left-hand part
of this estimate.

Let Pn E iP' n' n = 0, I, ..., be such that

Ilf- P" II c = EII (/, G).

LEMMA 5. If

n= 1,2, ... , (5.3 )

then for sufficiently large m ~ mo(~, G), Zo E L, Z E D(zo, Po/2), lrhere Po :=
Pl/,,(ZO), andO<!J<po/2

IP~,ml(Z)1 ~ Po m~(t/n),

wm . c(P,,, Zo, b) ~ ~(lln)(b/Po)'''·

(5.4 )

(5.5 )

Proof Choose an integer s such that 2' ~ n < 2' + I. The polynomial P"
can be rewritten in the form

.\'+1

PIltZ) = L Q;(z),
;~o

where

j= 0;

I ~j~s;

j=s+ 1.
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According to (5.3) for polynomials Qj(z) we have IIQjIIG~fl(21 i),
I ~j~s+ I. By the Bernstein-Walsh theorem [15, p. 77] we have

where Pi :=P2-'(ZO)' Consequently for zED(zo, Po/2) we obtain

Therefore, if ZE D(zo, Po/2) and m ~ 2 we have by (2.1) and Lemma 2

.\' + 1 .~ + 1

IP~"'I(Z)I ~ L IQ~"')(z)1 ~ L fl(2 I) Pj- '"
j~ , j~ I

= (2-"-') ",';" fl(2-
i

) [P2'-I(ZO))]'"
fl P" + 1 L. (2' - ') (~ )

j ~ , fl P2 ) ~o

.~ + t

~fl(lln)p(~'" L 2('- ik21i ,),m~fl(l/n)po"',
j~ ,

as soon as m > cia.
Inequality (5.5) immediately follows from estimate (5.4). Indeed, since

",-I 1 I
P,,(z) = L ~ (z - zo)i p~,j)(zo)+ ( _ I)' f (z - 0'" I p:,m,(o d(

j~O J. m . [:0.:)

according to (5.4) we find

Thus Lemma 5 is proved.

Let Zo E L be an arbitrary point. By our assumption (5.3) holds. There
fore, for polynomials P,,(z), (5.5) is true and, consequently, by Lemma 5 we
have

Let s> 1 be such that J := PI/ls",(Zo) < Po/2 (a more concrete choice of the
number S = S(fl, G) will be specified below).
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According to (2.1) and Lemma 2

Therefore
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By Lemma 1

P(y) c D(z, P'4Iy/(z»)

holds for any arc y c oj and point z E y.
Thus choosing in (5.6) point Zo such that

Wm. L(f, ZO, J) ~ rom [( snc4) I]

we successively obtain for m > cia

E(f, G) ;:nvm[(snc4) -I] - C31l[(sn) -I] s,-,m ~ 1l[(sn) I ](cs - C3 S' -,m)

~ cs ll[(sn) -I ]/2 ~ c6Il(l/n)

6. PROOF OF THEOREM 3

Choose a: 0 < IX < 1 and consider the function f(z) = f,(z) := (z - 1)'.
For this function

n = 1,2, .... (6.1 )

Indeed, according to Theorem 2 it is sufficient for the proof of (6.1) to
establish the double inequality

for 0 < c:5 < 1 and m ~ 1.
In fact, the right-hand part of (6.2) is obvious:

Now let p E IP m _ 1 be a polynomial for which

Wm.D(f, I,J)= Ilf-pIIDnDlI,b)'

(6.2)
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We have for 0 < b < I
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(6.3 )

loc·(oc-I)···(oc-m+ 1)1 (bI2)' ",

= iP"'I( 1- b12)1

_m! If /(O-p(O d Y I
- 2n ,'OIl b/Ui2d( + 15/2 -1)"'+ 1 (,

~ m! (15/2) -", W",. n(f, I, b).

Consequently by (4.4)

6i,n(15) ~ w",. n(f, I, b) ~ 15'.

Thus the relation (6.1) is proved.
Now let us estimate from above the speed of rational approximation of

the function / on 15.
According to the Cauchy formula

/(z) =_1. f !(O d(+f h(O de
2m 1(1~2(,-Z [1.21(-Z

where Izi < 1, h(O = h,(O := (1/2ni) I( - II' (I - e2n
,,).

The first integral in (6.3) can be approximated even by polynomials with
rate of geometrical progression. In constructing a rational approximation
for the second integral choose q: °< q < I and consider the system of
points

j=o, 1,2, ....

Since for every integer k

I y (C-()k I
-y-= R k . j ((" z)+ -y- -y-'
(, -z (,j- z (,-z

y k 1 (C-(r
where Rk,j(("z):= L (-7 ;+1'

i~O(j -)

for (E [(j + 1 , (j] and ZED we derive

1
_ 1__ R. 7 I = I C- ( Ik _1_ ~ (I - q )k
(-z k./((,-) C-z I(-zl~ I(-zl'

For some integers sand k consider the rational function
,\' I

R(z) := L: f. . h(O Rk . j ((, z) d(
j~O [,'+ ,. ,,]

of degree at most sk.
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It is easy to see that

I
f h~) d( - R(z) I~ f , I~~~I Id(/ +'I' L . Ih(OI
[1.2]' Z [I. ,,] I~ .. I }=() ['If I.';]

X I(~z - Rk.j(C, z) lid"
~ q"' + (l - q )k.

/47

Therefore, if we put s = k = [n I/2
], then the last inequality allows to

write for the function f

Now consider the function

rp(z):= L. Z2
k exp{ _2 k

/
2

}.

k=O

By the Hadamard theorem [5, p. 42], rp E B. Let n be arbitrary, and let the
integer j be defined by 2/ ~ n < 2} + I. We find

:E; L. exp{-2k/2}~exp{-n'/2}.

k~j+ I

It is easy to see that the function g ;=f + rp satisfies (2.4) and (2.5).
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