Uniform Polynomial Approximation of Analytic Functions on a Quasidisk*

Vladimir Andrievskii

Institute for Applied Mathematics and Mechanics, Ukrainian Academy of Sciences, Donetsk 340114, Ukraine
Communicated by Peter B. Borwein

Received April 24, 1991; accepted December 31, 1991

Abstract

Let L be an arbitrary quasidisk, and f analytic in G and continuous on \bar{G}. We prove two theorems establishing a connection between the sequence of values $E_{n}(f, \bar{G}), n=1,2, \ldots$, of best uniform polynomial approximations of the function f on \bar{G} and its smoothness properties on the boundary ∂G. Then we apply one of these results to the solution of a problem suggested by Turan concerning the correlation between polynomial and rational approximations on the unit disk. © 1993 Academic Press, Inc.

1. Introduction

This paper is connected with the study of the values $E_{n}(f, \bar{G})$, $n=0,1,2, \ldots$, of best uniform polynomial approximations of a function f analytic in a bounded Jordan domain $G \subset \mathbb{C}$ and continuous on its closure \bar{G}.

The rate of decrease of $E_{n}(f, \bar{G})$ as $n \rightarrow \infty$, the geometric structure of the boundary ∂G of G, and the smoothness of the function f near the boundary interact in a complicated way.

The main subject of our paper is the consideration of the following two problems.

Let $\mu(\delta), \delta>0$, be a so-called normal majorant (for example, $\mu(\delta)=\delta^{c}$, $c=$ const >0).

Problem A. Describe all functions f satisfying

$$
\begin{equation*}
E_{n}(f, \bar{G})=O(\mu(1 / n)) \quad \text { as } \quad n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

Problem B. Describe all functions for which

$$
\begin{equation*}
E_{n}(f, \bar{G}) \sim \mu(1 / n), \quad n=1,2, \ldots \tag{1.2}
\end{equation*}
$$

[^0]where the symbol $g \sim \varphi$ means that
$$
1 / c \leqslant g \varphi \leqslant c
$$
holds for some constant $c>0$.
Problem A is a typical problem in approximation theory. One can find a complete survey of results obtained in this direction in $[6-9,3]$.

Problem B is initiated by some similar results of Stechkin [12] concerning the approximation of real functions.

We give the solution of Problems A and B in the case when G is an arbitrary quasidisk [1] and apply then these results to the study of a problem of Turan concerning the correlation between polynomial and rational approximations on the unit disk.

2. Definitions and Main Results

Let K be an arbitrary compact set in the complex plane \mathbb{C}. We denote by $A(K)$ the class of all functions continuous on K and analytic in its interior. Let $\mathbb{P}_{n}, n=0,1, \ldots$, be the class of all polynomials of degree at most n. For $f \in A(K), z \in \mathbb{C}, \delta>0, n=0,1, \ldots$, and an integer $m \geqslant 1$ put

$$
\begin{aligned}
\|f\|_{K} & :=\sup \{|f(z)|, z \in K\}, \\
E_{n}(f, K) & :=\inf \left\{\|f-p\|_{K}, p \in \mathbb{P}_{n}\right\}, \\
D(z, \delta) & :=\{\zeta:|\zeta-z|<\delta\}, \quad D:=D(0,1), \\
d(z, K) & :=\inf \{|\zeta-z|, \zeta \in K\}, \\
\omega_{m . K}(f, z, \delta) & :=E_{m-1}(f, K \cap \overline{D(z, \delta)}) .
\end{aligned}
$$

Let $G \subset \mathbb{C}$ be an arbitrary bounded quasidisk [1] with complement $\Omega:=$ $\widetilde{C} \backslash K$, and let $L=\partial G=\partial \Omega$ be their common boundary (hence L is a quasicircle). We recall that a geometric test for the quasiconformality of L is as follows: L is a quasicircle if and only if it is a Jordan curve and there exists a constant $c \geqslant 1$ such that for each pair of points $z_{1}, z_{2} \in L$

$$
\min _{j=1,2} \operatorname{diam}\left(\gamma_{j}\right) \leqslant c\left|z_{1}-z_{2}\right|
$$

where γ_{1} and γ_{2} are the components of $L \backslash\left\{z_{1}, z_{2}\right\}$.
We denote by $w=\Phi(z)$ the function that maps Ω conformally onto $\Delta:=\{w:|w|>1\}$ with the normalization $\Phi(\infty)=\infty, \Phi^{\prime}(\infty)>0$. We extend Φ continuously on $\bar{\Omega}$, retaining the notation Φ for the extended function, and denote the inverse function by $\Psi:=\Phi^{-1}$.

For an integer $m \geqslant 1$ we consider the following characteristic of the smoothness properties of a function f on L or, more exactly, of the function $\tilde{f}(w):=f[\Psi(w)]$ on $\{w:|w|=1\}=\partial \Delta:$

$$
\tilde{\omega}_{m}(\delta):=\sup \left\{E_{m} \quad,(f, \Psi(\gamma)), \gamma \subset \partial \Delta,|\gamma| \leqslant \delta\right\}, \quad \delta>0,
$$

where $\gamma \subset \partial \Delta$ is an arbitrary arc, $|\gamma|$ is its length.
When $G=D, \tilde{\omega}_{m}(\delta)$ is equivalent to the m th modulus of continuity of the function f on ∂G (see more precisely $[13,6]$).

We note also that $\check{\omega}_{1}(\delta)$ is simply equivalent to the usual modulus of continuity of a function \tilde{f} on $\partial \Delta$.

We use c, c_{1}, \ldots to denote positive constants (in general, different in different relations), depending, unless the contrary is explicitly stated, only on G or other inessential quantities.

Following [13], we call a function $\mu(\delta)$ a normal majorant if it is defined, finite, positive, and nondecreasing for $\delta>0$ and satisfies

$$
\begin{equation*}
\mu(t \delta) \leqslant c_{1} t^{\prime} \mu(\delta), \quad t \geqslant 1, \quad \delta>0 . \tag{2.1}
\end{equation*}
$$

For example, the function $\mu(\delta)=c_{1} \delta^{c}$ is a normal majorant.
For convenience of formulation of our results we assume, without loss of generality, that

$$
\begin{gathered}
\lim _{\delta \rightarrow+0} \mu(\delta)=0 \\
\mu(\delta)=c_{1} \quad \text { for } \quad \delta>c_{2} .
\end{gathered}
$$

Thforem 1. Let G be a quasidisk, μ a normal majorant, $f \in A(\bar{G})$. In order that (1.1) holds it is necessary for all sufficiently large $m \geqslant m_{0}(\mu, G)$ and sufficient for some $m \geqslant 1$ that

$$
\tilde{\omega}_{m}(\delta)=0(\mu(\delta)) \quad \text { as } \quad \delta \rightarrow 0 .
$$

Remark. According to Theorem 1 and Lemma 3 inequality

$$
\begin{equation*}
E_{n}(f, \bar{G}) \leqslant c \tilde{\omega}_{m}(1 / n), \quad n=1,2, \ldots \tag{2.2}
\end{equation*}
$$

holds for all integers $m \geqslant 1$, where $c=c(G, m)$.
In the majority of known results of this kind the particular case of (2.2) for $m=1$ is most popular.

Unfortunately, the example of function $f(z)=z$ and domain

$$
G=G_{x}:=\left\{z=r e^{i \theta \pi}: 0<r<1, \alpha / 2<\theta<2\right\}, \quad 0<\alpha<1,
$$

shows that even the condition $E_{n}(f, \bar{G})=0$ for $n \geqslant 1$ is not sufficient in order to assert that $\tilde{\omega}_{1}(\delta)=O\left(\delta^{x}\right)$ as $\delta \rightarrow 0$.

This fact, in particular, explains the role of the quantity $\tilde{\omega}_{m}(\delta)$ because the transition from $m=1$ to an arbitrary $m \geqslant 1$ gives us the possibility to obtain the description of functions with property (1.1).

Theorem 2. Let G be a quasidisk, μ a normal majorant, $f \in A(\bar{G})$. In order that (1.2) holds it is necessary and sufficient that

$$
\begin{equation*}
\tilde{\omega}_{m}(\delta) \sim \mu(\delta), \quad \delta>0 \tag{2.3}
\end{equation*}
$$

holds for all sufficiently large $m \geqslant m_{0}(\mu, G)$.
Theorem 2 can be applied to the solution of the following problem of Turan [14, Problem LXXXVII; 11, p. 363].

Denote by B the class of all functions $f \in A(\bar{D})$ which cannot be continued analytically beyond ∂D. Let $\rho_{n}(f, \bar{D}), n=0,1, \ldots$, be the best uniform approximation of the function f on \bar{D} by rational functions of the form $R_{n}(z):=p_{n}(z) / q_{n}(z)$, where $p_{n}, q_{n} \in \mathbb{P}_{n}$.

Turan has asked whether it is true that there is no $f_{0} \in B$ such that $E_{n}\left(f_{0}, \bar{D}\right) \geqslant c_{1} / n$, but $\rho_{n}\left(f_{0}, \bar{D}\right) \leqslant \exp \left\{-c_{2} n^{1 / 2}\right\}$ for $n=1,2, \ldots$.

We give the negative answer on this question and even prove a stronger result.

Theorem 3. For any $\alpha: 0<\alpha<1$ there is a function $g=g_{x} \in B$ such that

$$
\begin{align*}
& E_{n}(g, \bar{D}) \geqslant c_{1} n^{-x}, \tag{2.4}\\
& \rho_{n}(g, \bar{D}) \leqslant \exp \left\{-c_{2} n^{1 / 2}\right\}, \tag{2.5}
\end{align*}
$$

where $c_{i}=c_{i}(\alpha), i=1,2$.
We note that similar problems of rational approximation of analytic functions on compact sets of the complex plane were studied in [10]. There one can also find a survey of such results.

We use the notation $a \ll b$ to denote that $a \leqslant c b$.

3. Local Properties of the Conformal Mappings Φ and Ψ

In this section we recall some results from [1, 2, 4] that will be needed below.

Mappings Φ and Ψ can be extended to quasiconformal mappings of the whole complex plane on itself. Consequently, according to [2, Lemma 1] we can formulate the following assertion.

Lemma 1. For any three points $\zeta_{j} \in \bar{\Omega}, j=1,2,3$, the conditions $\left|\zeta_{1}-\zeta_{2}\right| \ll\left|\zeta_{1}-\zeta_{3}\right|$ and $\left|w_{1}-w_{2}\right| \ll\left|w_{1}-w_{3}\right|$, where $w_{j}:=\Phi\left(\zeta_{j}\right), j=1,2,3$, are equivalent and provide the inequalities

$$
\left|\frac{w_{1}-w_{3}}{w_{1}-w_{2}}\right|^{*} \ll\left|\frac{\zeta_{1}-\zeta_{3}}{\zeta_{1}-\zeta_{2}}\right| \ll\left|\frac{w_{1}-w_{3}}{w_{1}-w_{2}}\right|^{\beta}
$$

with some constants $\beta>\alpha>0$ depending only on L.
In the following we use without proof some geometrical facts which follow easily from Lemma 1. We formulate one of them (see, for example, [3, Lemma 2]).

For arbitrary $u>0$ and $z \in \mathbb{C}$ we put

$$
\begin{aligned}
& L_{1+u}:=\{\zeta:|\Phi(\zeta)|=1+u\}, \\
& \rho_{u}(z):=d\left(z, L_{1+u}\right) .
\end{aligned}
$$

Lemma 2. Let $u>v>0$. Then for $z \in L$

$$
\left(\frac{u}{v}\right)^{\alpha} \ll \frac{\rho_{u}(z)}{\rho_{v}(z)} \ll\left(\frac{u}{v}\right)^{\beta}
$$

holds, where α and β are constants from Lemma 1.

4. Proof of Theorem 1

To begin with let us establish the following assertion.
Lemma 3. For all $f \in A(\bar{G})$ and $m \geqslant 1$ the function $\tilde{\omega}_{m}(\delta)$ is a normal majorant.

Proof. It is obvious that the fulfillment of the condition (2.1) is only nontrivial. Let $0<\delta<2 \pi, t \geqslant 1$, and let $\gamma \subset \partial D$ be an arc for which

$$
E_{m} \quad 1(f, \Psi(\gamma))=\tilde{\omega}_{m}(t \delta), \quad|\gamma| \leqslant t \delta
$$

Without loss of generality we can assume that $|\gamma|>\delta$. Denote by γ_{1}, $\gamma_{2}, \ldots, \gamma_{k}$ the system of arcs with the following properties:
(i) $\gamma=\bigcup_{j=1}^{k} \gamma_{j}$;
(ii) $\delta / 2 \leqslant\left|\gamma_{j}\right| \leqslant \delta, j=\overline{1, k}$;
(iii) $\left|\gamma_{j} \cap \gamma_{j+1}\right| \geqslant \delta / 2, j=\overline{1, k-1}$;
(iv) $k \ll t$.

We put $l:=\Psi(\gamma), \quad l_{j}:=\Psi\left(\gamma_{j}\right), j=\overline{1, k}$. Choose j and let $p_{j}(z)=$ $p_{j}(z, f, m) \in \mathbb{P}_{m-1}$ be a polynomial such that

$$
\left\|f-p_{j}\right\|_{i}=E_{m-1}\left(f, l_{j}\right) .
$$

Consider the polynomial $q_{j}(z):=p_{j+1}(z)-p_{j}(z)$. For $z \in l_{j} \cap l_{j+1}$ we have

$$
\begin{equation*}
\left|q_{j}(z)\right| \leqslant\left|p_{j}(z)-f(z)\right|+\left|f(z)-p_{j+1}(z)\right| \leqslant 2 \tilde{\omega}_{m}(\delta) \tag{4.1}
\end{equation*}
$$

On arc $\gamma_{j} \cap \gamma_{j+1}$ one can construct the system of points $\omega_{1}, \ldots, \omega_{m}$ according to the following rule.
(i) If $m=1$, then $\omega_{1} \in \gamma_{j} \cap \gamma_{j+1}$ is an arbitrary point.
(ii) If $m>1$, then ω_{1} and ω_{m} are end points of the $\operatorname{arc} \gamma_{j} \cap \gamma_{j+1}$ and the other points are defined by

$$
\left|\omega_{i}-\omega_{i+1}\right|=2 \sin \frac{\left|\gamma_{j} \cap \gamma_{j+1}\right|}{2(m-1)}, \quad i=\overline{1, m-1}
$$

By Lemma 1 the set of points $z_{i}:=\Psi\left(\omega_{i}\right)$ satisfies for all $i, s=\overline{1, m}, i \neq s$

$$
\left|z_{i}-z_{s}\right| \sim \operatorname{diam} l_{j} \sim \operatorname{diam} l_{j+1}
$$

and for each point $z \in l$

$$
\left|\frac{z-z_{s}}{z_{i}-z_{s}}\right| \ll 1+\left|\frac{\Phi(z)-\omega_{s}}{\omega_{i}-\omega_{s}}\right|^{\beta} \ll t^{\beta} .
$$

By virtue of inequality (4.1) and the Lagranges interpolation formula

$$
q_{j}(z)=\sum_{i=1}^{m} q_{j}\left(z_{i}\right) \frac{\pi_{i}(z)}{\pi_{i}\left(z_{i}\right)}, \quad \pi_{i}(z)=\prod_{\substack{s=1 \\ s \neq i}}^{m}\left(z-z_{s}\right)
$$

we successively obtain for $z \in l$

$$
\left|q_{j}(z)\right| \ll \tilde{\omega}_{m}(\delta) \sum_{i=1}^{m} t^{\beta(m-1)} \sim t^{\beta(m-1)} \tilde{\omega}_{m}(\delta) .
$$

Therefore, if $z \in l_{j}$, then

$$
\begin{align*}
\left|f(z)-p_{1}(z)\right| \leqslant\left|f(z)-p_{j}(z)\right|+\sum_{i=1}^{j-1}\left|q_{i}(z)\right| & <j t^{\beta(m}{ }^{1)} \tilde{w}_{m}(\delta) \\
& \ll t^{\beta(m-1)+1} \tilde{\omega}_{m}(\delta) . \tag{4.2}
\end{align*}
$$

Consequently,

$$
\left.\tilde{\omega}_{m}(t \delta)=E_{m} \quad 1(f, l) \leqslant\left\|f-p_{1}\right\|_{1}<t^{\beta(m} \quad 1\right)+1 \tilde{\omega}_{m}(\delta),
$$

i.e., inequality (2.1) is satisfied for the function $\tilde{\omega}_{m}(\delta)$ with $c=\beta(m-1)+1$.

Now let $r(z, h), z \in L, h \geqslant 0$, be a function defined by the identity

$$
\rho_{r(z, h)}(z)=h .
$$

Let $z \in L$ be an arbitrary point, $w:=\Phi(z)$, and let $\gamma \subset \partial \Delta$ be an arc such that $w \in \gamma,|\gamma|=h, 0<h<2 \pi$. Denote by $p_{0} \in \mathbb{P}_{m-1}$ the polynomial for which

$$
\left\|f-p_{0}\right\|_{\Psi_{(i)}}=E_{m} \quad(f, \Psi(\gamma)) .
$$

Reasoning like in the proof of inequality (4.2) one can obtain for $\zeta \in L$

$$
\left|f(\zeta)-p_{0}(\zeta)\right| \ll \begin{cases}\tilde{\omega}_{m}[r(z, h)], & |\zeta-z| \leqslant h \tag{4.3}\\ \left.\tilde{\omega}_{m}[r(z, h)]\left[\frac{\Phi(\zeta)-\Phi(z)}{r(z, h)}\right)\right], & |\zeta-z|>h\end{cases}
$$

Using in the case $|\zeta-z|>h$ the estimates

$$
\left|\frac{\Phi(\zeta)-\Phi(z)}{r(z, h)}\right| \sim\left|\frac{\Phi(\zeta)-\Phi(z)}{\Phi\left(z_{h}\right)-\Phi(z)}\right| \ll\left|\frac{\zeta-z}{h}\right|^{1 / x}
$$

where z_{h} is an arbitrary point of the intersection $\partial D(z, h) \cap \Omega$ we can write (4.3) in the form

$$
\left|f(\zeta)-p_{0}(\zeta)\right| \ll \tilde{\omega}_{m}[r(z, h)]\left(1+\left|\frac{z-z_{0}}{h}\right|^{c / x}\right), \quad \zeta \in L
$$

By a result of Tamrazov (see, for example, [7, p. 425]) we have

$$
\begin{equation*}
\omega_{m, \delta}(f, z, h):=E_{m-1}(f, \overline{D(z, h) \cap G}) \ll \tilde{\omega}_{m}[r(z, h)] . \tag{4.4}
\end{equation*}
$$

To complete the proof of Theorem 1 it is sufficient to use a slightly modified version of the description of function classes with property (1.1) suggested in [3].

We confine ourselves to the formulation of this assertion for quasidisks only.

Lemma 4. Let G be a quasidisk, μ a normal majorant, $f \in A(\bar{G})$. In order that (1.1) holds it is necessary for all sufficiently large $m \geqslant m_{0}(\mu, G)$ and sufficient for some $m \geqslant 1$ that

$$
\omega_{m . \sigma}(f, z, h) \ll \mu[r(z, h)]
$$

holds for all $z \in L$ and $h>0$.

5. Proof of Theorem 2

We have to establish for sufficiently large m the equivalence of the following two double inequalities

$$
\begin{array}{rlrl}
c_{1} \mu(1 / n) & \leqslant E_{n}(f, \bar{G}) \leqslant c_{2} \mu(1 / n), & & n=1,2, \ldots \\
c_{3} \mu(\delta) \leqslant \tilde{\omega}_{m}(\delta) \leqslant c_{4} \mu(\delta), & & \delta>0 . \tag{5.2}
\end{array}
$$

Let (5.1) be true. The correctness of the right-hand part of (5.2) for sufficiently large m follows from Theorem 1 . For $0<\delta<1$, choosing integer n such that $(n+1)^{-1} \leqslant \delta<n^{-1}$, we have by Lemma 3 and inequality (2.2)

$$
\mu(\delta) \leqslant \mu(1 / n) \ll E_{n}(f, \bar{G}) \ll \tilde{\omega}_{m}(1 / n) \ll \tilde{\omega}_{m}(1 /(n+1)) \leqslant \tilde{\omega}_{m}(\delta) .
$$

Hence the correctness of the left-hand part of (5.2) is proved (even for all $m \geqslant 1$).

Now let (5.2) be satisfied. The right-hand part of the inequality (5.1) follows from Theorem 1. Let us verify the correctness of the left-hand part of this estimate.

Let $P_{n} \in \mathbb{P}_{n}, n=0,1, \ldots$, be such that

$$
\left\|f-P_{n}\right\|_{G}=E_{n}(f, \bar{G}) .
$$

Lemma 5. If

$$
\begin{equation*}
E_{n}(f, \bar{G}) \ll \mu(1 / n), \quad n=1,2, \ldots \tag{5.3}
\end{equation*}
$$

then for sufficiently large $m \geqslant m_{0}(\mu, G), z_{0} \in L, z \in D\left(z_{0}, \rho_{0} / 2\right)$, where $\rho_{0}:=$ $\rho_{1 / n}\left(z_{0}\right)$, and $0<\delta<\rho_{0} / 2$

$$
\begin{gather*}
\left|P_{n}^{(m)}(z)\right| \ll \rho_{0}^{m} \mu(1 / n), \tag{5.4}\\
\omega_{m, G}\left(P_{n}, z_{0}, \delta\right) \ll \mu(1 / n)\left(\delta / \rho_{0}\right)^{m} . \tag{5.5}
\end{gather*}
$$

Proof. Choose an integer s such that $2^{s} \leqslant n<2^{*+1}$. The polynomial P_{n} can be rewritten in the form

$$
P_{n}(z)=\sum_{j=0}^{s+1} Q_{i}(z)
$$

where

$$
Q_{i}(z):= \begin{cases}P_{1}(z), & j=0 \\ P_{2^{\prime}}(z)-P_{2^{j-1}}(z), & 1 \leqslant j \leqslant s \\ P_{n}(z)-P_{2^{\prime}}(z), & j=s+1\end{cases}
$$

According to (5.3) for polynomials $Q_{i}(z)$ we have $\left\|Q_{i}\right\|_{G} \ll \mu\left(2^{1 \cdots j}\right)$, $1 \leqslant j \leqslant s+1$. By the Bernstein-Walsh theorem [15, p. 77] we have

$$
\left\|Q_{j}\right\|_{\overline{\left.D_{(00}, \rho_{j}\right)}}<\mu\left(2^{j}\right)
$$

where $\rho_{j}:=\rho_{2-i}\left(z_{0}\right)$. Consequently for $z \in D\left(z_{0}, \rho_{0} / 2\right)$ we obtain

$$
\left.\| Q_{j}^{(m)}(z)\left|\leqslant \frac{m!}{2 \pi} \int_{\left.i D_{(z 0}, \rho_{j}\right)} \frac{\left|Q_{j}(\zeta)\right|}{|\zeta-z|^{m+1}}\right| d \zeta \right\rvert\,<\mu\left(2^{-i}\right) \rho_{j}^{-m}
$$

Therefore, if $z \in D\left(z_{0}, \rho_{0} / 2\right)$ and $m \geqslant 2$ we have by (2.1) and Lemma 2

$$
\begin{aligned}
\left|P_{n}^{(m)}(z)\right| & \leqslant \sum_{j=1}^{s+1}\left|Q_{j}^{(m)}(z)\right| \ll \sum_{j=1}^{s+1} \mu\left(2^{j j}\right) \rho_{j}^{-m} \\
& \left.=\mu\left(2^{-s-1}\right) \rho_{s+1}^{-m} \sum_{j=1}^{s+1} \frac{\mu\left(2^{-j}\right)}{\mu\left(2^{s-1}\right)}\left[\frac{\rho_{2-x-1}\left(z_{0}\right)}{\rho_{2-j}\left(z_{0}\right)}\right)\right]^{m} \\
& \ll \mu(1 / n) \rho_{0}^{-m} \sum_{j=1}^{s+1} 2^{(s-j)} 2^{(j-s) \times m} \ll \mu(1 / n) \rho_{0}^{-m}
\end{aligned}
$$

as soon as $m>c / \alpha$.
Inequality (5.5) immediately follows from estimate (5.4). Indeed, since

$$
P_{n}(z)=\sum_{j=0}^{m-1} \frac{1}{j!}\left(z-z_{0}\right)^{j} P_{n}^{(j)}\left(z_{0}\right)+\frac{1}{(m-1)!} \int_{[z 0,=]}(z-\zeta)^{m}{ }^{1} P_{n}^{(m)}(\zeta) d \zeta
$$

according to (5.4) we find

$$
\begin{aligned}
\omega_{m, G}\left(P_{n}, z_{0}, \delta\right) & \leqslant \sup _{z \in D\left(z_{0}, \delta\right)}\left|P_{n}(z)-\sum_{j=0}^{m} \frac{1}{j!}\left(z-z_{0}\right)^{j} P_{n}^{(j)}\left(z_{0}\right)\right| \\
& <\mu \mu(1 / n)\left(\delta / \rho_{0}\right)^{m} .
\end{aligned}
$$

Thus Lemma 5 is proved.
Let $z_{0} \in L$ be an arbitrary point. By our assumption (5.3) holds. Therefore, for polynomials $P_{n}(z)$, (5.5) is true and, consequently, by Lemma 5 we have

$$
\begin{aligned}
\omega_{m, \bar{G}}\left(f, z_{0}, \delta\right) & \leqslant \omega_{m, \bar{G}}\left(f-P_{n}, z_{0}, \delta\right)+\omega_{m, \bar{G}}\left(P_{n}, z_{0}, \delta\right) \\
& \leqslant E_{n}(f, \bar{G})+c_{1} \mu(1 / n)\left(\delta / \rho_{0}\right)^{m} .
\end{aligned}
$$

Let $s>1$ be such that $\delta:=\rho_{1 / s m)}\left(z_{0}\right)<\rho_{0} / 2$ (a more concrete choice of the number $s=s(\mu, G)$ will be specified below).

According to (2.1) and Lemma 2

$$
c_{1} \mu(1 / n)\left(\delta / \rho_{0}\right)^{m} \leqslant c_{2} \mu(1 /(s n)) s^{c}\left[\frac{\rho_{1 /(s n)}\left(z_{0}\right)}{\rho_{1 / n}\left(z_{0}\right)}\right]^{m} \leqslant c_{3} \mu(1 /(s n)) s^{c-z m}
$$

Therefore

$$
\begin{equation*}
E_{n}(f, \bar{G}) \geqslant \omega_{m, L}\left(f, z_{0}, \delta\right)-c_{3} \mu(1 /(s n)) s^{c-\alpha m} \tag{5.6}
\end{equation*}
$$

By Lemma 1

$$
\Psi(\gamma) \subset D\left(z, \rho_{c 4|y|}(z)\right)
$$

holds for any arc $\gamma \subset \partial \Delta$ and point $z \in \gamma$.
Thus choosing in (5.6) point z_{0} such that

$$
\omega_{m, L}\left(f, z_{0}, \delta\right) \geqslant \tilde{\omega}_{m}\left[\left(s n c_{4}\right)^{-1}\right]
$$

we successively obtain for $m>c / \alpha$

$$
\begin{aligned}
& \qquad \begin{aligned}
E(f, \bar{G}) & \geqslant \tilde{\omega}_{m}\left[\left(s n c_{4}\right)^{-1}\right]-c_{3} \mu\left[(s n)^{-1}\right] s^{s-x m} \geqslant \mu\left[(s n)^{-1}\right]\left(c_{5}-c_{3} s^{c-x m}\right) \\
& \geqslant c_{5} \mu\left[(s n)^{-1}\right] / 2 \geqslant c_{6} \mu(1 / n)
\end{aligned} \\
& \text { as soon as } s \geqslant\left(2 c_{3} / c_{5}\right)^{1 /(x m-c)}
\end{aligned}
$$

6. Proof of Theorem 3

Choose $\alpha: 0<\alpha<1$ and consider the function $f(z)=f_{x}(z):=(z-1)^{\alpha}$. For this function

$$
\begin{equation*}
E_{n}(f, \bar{D}) \gg n^{-x}, \quad n=1,2, \ldots \tag{6.1}
\end{equation*}
$$

Indeed, according to Theorem 2 it is sufficient for the proof of (6.1) to establish the double inequality

$$
\begin{equation*}
\delta^{\alpha} \ll \tilde{\omega}_{m}(\delta) \ll \delta^{\alpha} \tag{6.2}
\end{equation*}
$$

for $0<\delta<1$ and $m \geqslant 1$.
In fact, the right-hand part of (6.2) is obvious:

$$
\tilde{\omega}_{m}(\delta) \leqslant \omega_{1, ~}(f, 1, \delta)=\delta^{x} / 2
$$

Now let $p \in \mathbb{P}_{m-1}$ be a polynomial for which

$$
\omega_{m, \delta}(f, 1, \delta)=\|f-p\|_{\overline{D \cap D(1, \delta)}} .
$$

We have for $0<\delta<1$

$$
\begin{aligned}
& |\alpha \cdot(\alpha-1) \cdots(\alpha-m+1)|(\delta / 2)^{\alpha-m} \\
& \quad=\left|f^{(m)}(1-\delta / 2)\right| \\
& \left.\left.\quad=\frac{m!}{2 \pi} \right\rvert\, \int_{\delta D(1} \quad \delta / 2, \delta / 2\right) \\
& \quad \leqslant m!(\delta / 2)^{-m} \omega_{m, \bar{D}}(f, 1, \delta) .
\end{aligned}
$$

Consequently by (4.4)

$$
\tilde{\omega}_{m}(\delta) \gg \omega_{m, \bar{\sigma}}(f, 1, \delta) \gg \delta^{x}
$$

Thus the relation (6.1) is proved.
Now let us estimate from above the speed of rational approximation of the function f on \bar{D}.

According to the Cauchy formula

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{|\zeta|=2} \frac{f(\zeta)}{\zeta-z} d \zeta+\int_{[1,2]} \frac{h(\zeta)}{\zeta-z} d \zeta \tag{6.3}
\end{equation*}
$$

where $|z|<1, h(\zeta)=h_{x}(\zeta):=(1 / 2 \pi i)|\zeta-1|^{x}\left(1-e^{2 \pi x i}\right)$.
The first integral in (6.3) can be approximated even by polynomials with rate of geometrical progression. In constructing a rational approximation for the second integral choose $q: 0<q<1$ and consider the system of points

$$
\zeta_{j}:=1+q^{j}, \quad j=0,1,2, \ldots
$$

Since for every integer k

$$
\begin{aligned}
& \frac{1}{\zeta-z}=R_{k, j}(\zeta, z)+\left(\frac{\zeta_{j}-\zeta}{\zeta_{j}-z}\right)^{k} \frac{1}{\zeta-z} \\
& \quad \text { where } \quad R_{k, j}(\zeta, z):=\sum_{i=0}^{k-1} \frac{\left(\zeta_{j}-\zeta\right)^{i}}{(\zeta-z)^{i+1}}
\end{aligned}
$$

for $\zeta \in\left[\zeta_{j+1}, \zeta_{j}\right]$ and $z \in D$ we derive

$$
\left|\frac{1}{\zeta-z}-R_{k, j}(\zeta, z)\right|=\left|\frac{\zeta_{j}-\zeta}{\zeta_{j}-z}\right|^{k} \frac{1}{|\zeta-z|} \leqslant \frac{(1-q)^{k}}{|\zeta-z|} .
$$

For some integers s and k consider the rational function

$$
R(z):=\sum_{i=0}^{s-1} \int_{\left[\zeta_{j+1}, \zeta,\right]} h(\zeta) R_{k, j}(\zeta, z) d \zeta
$$

of degree at most $s k$.

It is easy to see that

$$
\begin{aligned}
\left|\int_{[1,2]} \frac{h(\zeta)}{\zeta-z} d \zeta-R(z)\right| \leqslant & \int_{[1, \zeta]} \frac{|h(\zeta)|}{|\zeta-z|}|d \zeta|+\sum_{j=0}^{1} \int_{\left[\zeta_{i+1}, \xi\right]}|h(\zeta)| \\
& \times\left|\frac{1}{\zeta-z}-R_{k, j}(\zeta, z)\right||d \zeta| \\
& <q^{\alpha^{s}+(1-q)^{k} .}
\end{aligned}
$$

Therefore, if we put $s=k=\left[n^{1 / 2}\right]$, then the last inequality allows to write for the function f

$$
\rho_{n}(f, \bar{D}) \ll \exp \left\{-c_{1} n^{1 / 2}\right\} .
$$

Now consider the function

$$
\varphi(z):=\sum_{k=0}^{\infty} z^{2^{k}} \exp \left\{-2^{k / 2}\right\} .
$$

By the Hadamard theorem [5, p. 42], $\varphi \in B$. Let n be arbitrary, and let the integer j be defined by $2^{i} \leqslant n<2^{i+1}$. We find

$$
\begin{aligned}
\rho_{n}(\varphi, \bar{D}) \leqslant E_{n}(\varphi, \bar{D}) & \leqslant \max _{z \in D}\left|\sum_{k=j+1}^{\infty} z^{2^{k}} \exp \left\{-2^{k / 2}\right\}\right| \\
& \leqslant \sum_{k=j+1}^{\infty} \exp \left\{-2^{k / 2}\right\} \ll \exp \left\{-n^{1 / 2}\right\} .
\end{aligned}
$$

It is easy to see that the function $g:=f+\varphi$ satisfies (2.4) and (2.5).

Acknowledgments

It is a pleasure to thank J. Becker, D. Gaier, O. Hübner, and Ch. Pommerenke for some stimulating conversations on the subject matter of this paper.

References

1. L. V. Ahlfors, "Lectures on Quasiconformal Mappings," Van Nostrand, Princeton, NJ, 1966.
2. V. V. Andrievskir, Some properties of continua with a piecewise quasiconformal boundary, Ukrain. Math. Zh. 32 (1980), 435-440 [in Russian]: English translation, Ukrainian Math. J. 32 (1980).
3. V. V. Andrifvski, A description of classes of functions with a given rate of decrease of their best uniform polynomial approximations, Ukrain Math. Zh. 36 (1984), 602-606 [in Russian]; English translation, Ukrainian Math. J. 36 (1984).
4. V. I. Belyi, Conformal mappings and the approximation of analytic functions in domains with a quasiconformal boundary, Mat. Sb. 102, No. 144 (1977), 331-361 [in Russian]; English translation, Math. USSR-Sb. 31 (1977).
5. L. Bieberbach, "Analytische Fortsetzung," Springer-Verlag, Berlin/Göttingen/Heidelberg, 1955.
6. E. M. Dynkin, On a uniform approximation of functions on the Jordan domain, Sibirsk Mat. Zh. 18 (1977), 775-786 [in Russian]; English translation, Sibererian Math. J. 18 (1977).
7. V. K. Dzyadyk, "Introduction to the Theory of Uniform Approximation of Functions by Polynomials," Nauka, Moskow, 1977. [In Russian]
8. V. K. Dzyadyk and G. A. Alibekov, On the uniform approximation of functions of a complex variable on closed sets with corners, Mat. Sb. 75, No. 117 (1968), 502-557 [in Russian]; English translation, Math. USSR-Sb. 4 (1968).
9. D. Gaier, "Lectures on Complex Approximation," Birkhäuser, Boston/Basel/Stuttgart, 1987.
10. V. V. Mimeskool, "Constructive Properties of Functions Admiting Smoothness Continuation," Dissertation, Inst. for Appl. Math. and Mech., Ukrainian Acad. of Sciences, Donetsk, 1986. [In Russian]
11. Ch. Pommerenke, Problems in complex function theory, Bull. London Math. Soc. 4 (1972), 354-366.
12. S. B. Stechkin, On the order of the best approximation of continuous functions, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 219-242. [In Russian]
13. P. M. Tamrazov, "Smoothnesses and Polynomial Approximations," Naukova Dumka, Kiev, 1975. [In Russian]
14. P. Tlran, On some open problems of approximation theory, J. Approx. Theory 29 (1980), 23-85.
15. J. L. Walsh, "Interpolation and Approximation by Rational Functions in the Complex Domain," Amer. Math. Soc., Providence, RI, 1965.

[^0]: * Supported by the Alexander von Humboldt Foundation.

