Uniform Polynomial Approximation of Analytic Functions on a Quasidisk*

VLADIMIR ANDRIEVSKII

Institute for Applied Mathematics and Mechanics, Ukrainian Academy of Sciences, Donetsk 340114, Ukraine

Communicated by Peter B. Borwein

Received April 24, 1991; accepted December 31, 1991

Let L be an arbitrary quasidisk, and f analytic in G and continuous on \overline{G} . We prove two theorems establishing a connection between the sequence of values $E_n(f, \overline{G})$, n = 1, 2, ..., of best uniform polynomial approximations of the function f on \overline{G} and its smoothness properties on the boundary ∂G . Then we apply one of these results to the solution of a problem suggested by Turan concerning the correlation between polynomial and rational approximations on the unit disk.

1. Introduction

This paper is connected with the study of the values E_n (f, \bar{G}) , n=0, 1, 2, ..., of best uniform polynomial approximations of a function f analytic in a bounded Jordan domain $G \subset \mathbb{C}$ and continuous on its closure \bar{G} .

The rate of decrease of $E_n(f, \overline{G})$ as $n \to \infty$, the geometric structure of the boundary ∂G of G, and the smoothness of the function f near the boundary interact in a complicated way.

The main subject of our paper is the consideration of the following two problems.

Let $\mu(\delta)$, $\delta > 0$, be a so-called normal majorant (for example, $\mu(\delta) = \delta^c$, c = const > 0).

PROBLEM A. Describe all functions f satisfying

$$E_n(f, \bar{G}) = O(\mu(1/n)) \quad \text{as} \quad n \to \infty.$$
 (1.1)

PROBLEM B. Describe all functions f for which

$$E_n(f, \bar{G}) \sim \mu(1/n), \qquad n = 1, 2, ...,$$
 (1.2)

* Supported by the Alexander von Humboldt Foundation.

136

0021-9045/93 \$5.00

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved. where the symbol $g \sim \varphi$ means that

$$1/c \leq g\varphi \leq c$$

holds for some constant c > 0.

Problem A is a typical problem in approximation theory. One can find a complete survey of results obtained in this direction in [6-9, 3].

Problem B is initiated by some similar results of Stechkin [12] concerning the approximation of real functions.

We give the solution of Problems A and B in the case when G is an arbitrary quasidisk [1] and apply then these results to the study of a problem of Turan concerning the correlation between polynomial and rational approximations on the unit disk.

2. DEFINITIONS AND MAIN RESULTS

Let K be an arbitrary compact set in the complex plane \mathbb{C} . We denote by A(K) the class of all functions continuous on K and analytic in its interior. Let \mathbb{P}_n , n=0,1,..., be the class of all polynomials of degree at most n. For $f \in A(K)$, $z \in \mathbb{C}$, $\delta > 0$, n=0,1,..., and an integer $m \ge 1$ put

$$||f||_{K} := \sup\{|f(z)|, z \in K\},\$$

$$E_{n}(f, K) := \inf\{||f - p||_{K}, p \in \mathbb{P}_{n}\},\$$

$$D(z, \delta) := \{\zeta : |\zeta - z| < \delta\}, \qquad D := D(0, 1),\$$

$$d(z, K) := \inf\{|\zeta - z|, \zeta \in K\},\$$

$$\omega_{m, K}(f, z, \delta) := E_{m-1}(f, K \cap \overline{D(z, \delta)}).$$

Let $G \subset \mathbb{C}$ be an arbitrary bounded quasidisk [1] with complement $\Omega := \overline{\mathbb{C}} \setminus K$, and let $L = \partial G = \partial \Omega$ be their common boundary (hence L is a quasicircle). We recall that a geometric test for the quasiconformality of L is a follows: L is a quasicircle if and only if it is a Jordan curve and there exists a constant $c \ge 1$ such that for each pair of points $z_1, z_2 \in L$

$$\min_{j=1,2} \operatorname{diam}(\gamma_j) \leqslant c |z_1 - z_2|,$$

where γ_1 and γ_2 are the components of $L \setminus \{z_1, z_2\}$.

We denote by $w = \Phi(z)$ the function that maps Ω conformally onto $\Delta := \{w: |w| > 1\}$ with the normalization $\Phi(\infty) = \infty$, $\Phi'(\infty) > 0$. We extend Φ continuously on $\overline{\Omega}$, retaining the notation Φ for the extended function, and denote the inverse function by $\Psi := \Phi^{-1}$.

For an integer $m \ge 1$ we consider the following characteristic of the smoothness properties of a function f on L or, more exactly, of the function $\tilde{f}(w) := f[\Psi(w)]$ on $\{w : |w| = 1\} = \partial \Delta$:

$$\tilde{\omega}_m(\delta) := \sup \{ E_{m-1}(f, \Psi(\gamma)), \gamma \subset \partial \Delta, |\gamma| \leq \delta \}, \qquad \delta > 0,$$

where $\gamma \subset \partial \Delta$ is an arbitrary arc, $|\gamma|$ is its length.

When G = D, $\tilde{\omega}_m(\delta)$ is equivalent to the *m*th modulus of continuity of the function f on ∂G (see more precisely [13, 6]).

We note also that $\tilde{\omega}_1(\delta)$ is simply equivalent to the usual modulus of continuity of a function \tilde{f} on $\partial \Delta$.

We use $c, c_1, ...$ to denote positive constants (in general, different in different relations), depending, unless the contrary is explicitly stated, only on G or other inessential quantities.

Following [13], we call a function $\mu(\delta)$ a normal majorant if it is defined, finite, positive, and nondecreasing for $\delta > 0$ and satisfies

$$\mu(t\delta) \leq c_1 t^c \mu(\delta), \qquad t \geq 1, \quad \delta > 0.$$
 (2.1)

For example, the function $\mu(\delta) = c_1 \delta^c$ is a normal majorant.

For convenience of formulation of our results we assume, without loss of generality, that

$$\lim_{\delta \to +0} \mu(\delta) = 0;$$

$$\mu(\delta) = c_1 \quad \text{for} \quad \delta > c_2.$$

Theorem 1. Let G be a quasidisk, μ a normal majorant, $f \in A(\overline{G})$. In order that (1.1) holds it is necessary for all sufficiently large $m \ge m_0(\mu, G)$ and sufficient for some $m \ge 1$ that

$$\tilde{\omega}_{m}(\delta) = 0(u(\delta))$$
 as $\delta \to 0$.

Remark. According to Theorem 1 and Lemma 3 inequality

$$E_n(f, \bar{G}) \le c\tilde{\omega}_m(1/n), \qquad n = 1, 2, ...$$
 (2.2)

holds for all integers $m \ge 1$, where c = c(G, m).

In the majority of known results of this kind the particular case of (2.2) for m = 1 is most popular.

Unfortunately, the example of function f(z) = z and domain

$$G = G_{\alpha} := \{ z = re^{i\theta \pi} : 0 < r < 1, \alpha/2 < \theta < 2 \}, \quad 0 < \alpha < 1,$$

shows that even the condition $E_n(f, \overline{G}) = 0$ for $n \ge 1$ is not sufficient in order to assert that $\widetilde{\omega}_1(\delta) = O(\delta^{\alpha})$ as $\delta \to 0$.

This fact, in particular, explains the role of the quantity $\tilde{\omega}_m(\delta)$ because the transition from m=1 to an arbitrary $m \ge 1$ gives us the possibility to obtain the description of functions with property (1.1).

THEOREM 2. Let G be a quasidisk, μ a normal majorant, $f \in A(\overline{G})$. In order that (1.2) holds it is necessary and sufficient that

$$\tilde{\omega}_m(\delta) \sim \mu(\delta), \qquad \delta > 0$$
 (2.3)

holds for all sufficiently large $m \ge m_0(\mu, G)$.

Theorem 2 can be applied to the solution of the following problem of Turan [14, Problem LXXXVII; 11, p. 363].

Denote by B the class of all functions $f \in A(\overline{D})$ which cannot be continued analytically beyond ∂D . Let $\rho_n(f, \overline{D})$, n = 0, 1, ..., be the best uniform approximation of the function f on \overline{D} by rational functions of the form $R_n(z) := p_n(z)/q_n(z)$, where $p_n, q_n \in \mathbb{P}_n$.

Turan has asked whether it is true that there is no $f_0 \in B$ such that $E_n(f_0, \bar{D}) \ge c_1/n$, but $\rho_n(f_0, \bar{D}) \le \exp\{-c_2 n^{1/2}\}$ for n = 1, 2, ...

We give the negative answer on this question and even prove a stronger result.

THEOREM 3. For any α : $0 < \alpha < 1$ there is a function $g = g_{\alpha} \in B$ such that

$$E_n(g,\bar{D}) \geqslant c_1 n^{-\alpha},\tag{2.4}$$

$$\rho_n(g, \bar{D}) \le \exp\{-c_2 n^{1/2}\},$$
(2.5)

where $c_i = c_i(\alpha)$, i = 1, 2.

We note that similar problems of rational approximation of analytic functions on compact sets of the complex plane were studied in [10]. There one can also find a survey of such results.

We use the notation $a \le b$ to denote that $a \le cb$.

3. Local Properties of the Conformal Mappings $oldsymbol{\Phi}$ and $oldsymbol{\Psi}$

In this section we recall some results from [1, 2, 4] that will be needed below.

Mappings Φ and Ψ can be extended to quasiconformal mappings of the whole complex plane on itself. Consequently, according to [2, Lemma 1] we can formulate the following assertion.

LEMMA 1. For any three points $\zeta_j \in \overline{\Omega}$, j = 1, 2, 3, the conditions $|\zeta_1 - \zeta_2| \leqslant |\zeta_1 - \zeta_3|$ and $|w_1 - w_2| \leqslant |w_1 - w_3|$, where $w_j := \Phi(\zeta_j)$, j = 1, 2, 3, are equivalent and provide the inequalities

$$\left| \frac{w_1 - w_3}{w_1 - w_2} \right|^{x} \ll \left| \frac{\zeta_1 - \zeta_3}{\zeta_1 - \zeta_2} \right| \ll \left| \frac{w_1 - w_3}{w_1 - w_2} \right|^{\beta}$$

with some constants $\beta > \alpha > 0$ depending only on L.

In the following we use without proof some geometrical facts which follow easily from Lemma 1. We formulate one of them (see, for example, [3, Lemma 2]).

For arbitrary u > 0 and $z \in \mathbb{C}$ we put

$$L_{1+u} := \{ \zeta : |\Phi(\zeta)| = 1 + u \},$$

$$\rho_{\nu}(z) := d(z, L_{1+\nu}).$$

LEMMA 2. Let u > v > 0. Then for $z \in L$

$$\left(\frac{u}{v}\right)^{\alpha} \ll \frac{\rho_{u}(z)}{\rho_{v}(z)} \ll \left(\frac{u}{v}\right)^{\beta}$$

holds, where α and β are constants from Lemma 1.

4. Proof of Theorem 1

To begin with let us establish the following assertion.

LEMMA 3. For all $f \in A(\overline{G})$ and $m \ge 1$ the function $\tilde{\omega}_m(\delta)$ is a normal majorant.

Proof. It is obvious that the fulfillment of the condition (2.1) is only nontrivial. Let $0 < \delta < 2\pi$, $t \ge 1$, and let $\gamma \subset \partial D$ be an arc for which

$$E_{m-1}(f, \Psi(\gamma)) = \tilde{\omega}_m(t\delta), \quad |\gamma| \leq t\delta.$$

Without loss of generality we can assume that $|\gamma| > \delta$. Denote by γ_1 , γ_2 , ..., γ_k the system of arcs with the following properties:

- (i) $\gamma = \bigcup_{j=1}^k \gamma_j$;
- (ii) $\delta/2 \le |\gamma_j| \le \delta, j = \overline{1, k};$
- (iii) $|\gamma_j \cap \gamma_{j+1}| \geqslant \delta/2, j = \overline{1, k-1};$
- (iv) $k \leqslant t$.

We put $l := \Psi(\gamma)$, $l_j := \Psi(\gamma_j)$, $j = \overline{1, k}$. Choose j and let $p_j(z) = p_j(z, f, m) \in \mathbb{P}_{m-1}$ be a polynomial such that

$$||f - p_i||_{l_i} = E_{m-1}(f, l_i).$$

Consider the polynomial $q_j(z) := p_{j+1}(z) - p_j(z)$. For $z \in l_j \cap l_{j+1}$ we have

$$|q_j(z)| \le |p_j(z) - f(z)| + |f(z) - p_{j+1}(z)| \le 2\tilde{\omega}_m(\delta).$$
 (4.1)

On arc $\gamma_j \cap \gamma_{j+1}$ one can construct the system of points $\omega_1, ..., \omega_m$ according to the following rule.

- (i) If m = 1, then $\omega_1 \in \gamma_i \cap \gamma_{i+1}$ is an arbitrary point.
- (ii) If m > 1, then ω_1 and ω_m are end points of the arc $\gamma_j \cap \gamma_{j+1}$ and the other points are defined by

$$|\omega_i - \omega_{i+1}| = 2\sin\frac{|\gamma_j \cap \gamma_{j+1}|}{2(m-1)}, \quad i = \overline{1, m-1}.$$

By Lemma 1 the set of points $z_i := \Psi(\omega_i)$ satisfies for all $i, s = \overline{1, m}, i \neq s$

$$|z_i - z_s| \sim \text{diam } l_j \sim \text{diam } l_{j+1}$$

and for each point $z \in l$

$$\left| \frac{z - z_s}{z_i - z_s} \right| \ll 1 + \left| \frac{\boldsymbol{\phi}(z) - \omega_s}{\omega_i - \omega_s} \right|^{\beta} \ll t^{\beta}.$$

By virtue of inequality (4.1) and the Lagranges interpolation formula

$$q_j(z) = \sum_{i=1}^m q_j(z_i) \frac{\pi_i(z)}{\pi_i(z_i)}, \qquad \pi_i(z) = \prod_{s=1}^m (z - z_s)$$

we successively obtain for $z \in l$

$$|q_j(z)| \ll \tilde{\omega}_m(\delta) \sum_{i=1}^m t^{\beta(m-1)} \sim t^{\beta(m-1)} \tilde{\omega}_m(\delta).$$

Therefore, if $z \in I_i$, then

$$|f(z) - p_1(z)| \le |f(z) - p_j(z)| + \sum_{i=1}^{j-1} |q_i(z)| \le jt^{\beta(m-1)} \tilde{\omega}_m(\delta)$$

$$\le t^{\beta(m-1)+1} \tilde{\omega}_m(\delta). \quad (4.2)$$

Consequently,

$$\tilde{\omega}_m(t\delta) = E_{m-1}(f, l) \le ||f - p_1||_l \le t^{\beta(m-1)+1} \tilde{\omega}_m(\delta),$$

i.e., inequality (2.1) is satisfied for the function $\tilde{\omega}_m(\delta)$ with $c = \beta(m-1) + 1$. Now let r(z, h), $z \in L$, $h \ge 0$, be a function defined by the identity

$$\rho_{r(z,h)}(z) = h.$$

Let $z \in L$ be an arbitrary point, $w := \Phi(z)$, and let $\gamma \subset \partial \Delta$ be an arc such that $w \in \gamma$, $|\gamma| = h$, $0 < h < 2\pi$. Denote by $p_0 \in \mathbb{P}_{m-1}$ the polynomial for which

$$||f - p_0||_{\Psi(\gamma)} = E_{m-1}(f, \Psi(\gamma)).$$

Reasoning like in the proof of inequality (4.2) one can obtain for $\zeta \in L$

$$|f(\zeta) - p_0(\zeta)| \ll \begin{cases} \tilde{\omega}_m[r(z,h)], & |\zeta - z| \leq h; \\ \tilde{\omega}_m[r(z,h)] \left[\frac{\Phi(\zeta) - \Phi(z)}{r(z,h)} \right]^c, & |\zeta - z| > h. \end{cases}$$
(4.3)

Using in the case $|\zeta - z| > h$ the estimates

$$\left| \frac{\boldsymbol{\Phi}(\zeta) - \boldsymbol{\Phi}(z)}{r(z,h)} \right| \sim \left| \frac{\boldsymbol{\Phi}(\zeta) - \boldsymbol{\Phi}(z)}{\boldsymbol{\Phi}(z_h) - \boldsymbol{\Phi}(z)} \right| \ll \left| \frac{\zeta - z}{h} \right|^{1/x},$$

where z_h is an arbitrary point of the intersection $\partial D(z, h) \cap \Omega$ we can write (4.3) in the form

$$|f(\zeta) - p_0(\zeta)| \leqslant \tilde{\omega}_m[r(z,h)] \left(1 + \left| \frac{z - z_0}{h} \right|^{c/x} \right), \qquad \zeta \in L.$$

By a result of Tamrazov (see, for example, [7, p. 425]) we have

$$\omega_{m,G}(f,z,h) := E_{m-1}(f, \widetilde{D(z,h) \cap G}) \leqslant \widetilde{\omega}_m[r(z,h)]. \tag{4.4}$$

To complete the proof of Theorem 1 it is sufficient to use a slightly modified version of the description of function classes with property (1.1) suggested in [3].

We confine ourselves to the formulation of this assertion for quasidisks only.

LEMMA 4. Let G be a quasidisk, μ a normal majorant, $f \in A(\overline{G})$. In order that (1.1) holds it is necessary for all sufficiently large $m \ge m_0(\mu, G)$ and sufficient for some $m \ge 1$ that

$$\omega_{m,\bar{G}}(f,z,h) \leqslant \mu[r(z,h)]$$

holds for all $z \in L$ and h > 0.

5. Proof of Theorem 2

We have to establish for sufficiently large m the equivalence of the following two double inequalities

$$c_1 \mu(1/n) \le E_n(f, \overline{G}) \le c_2 \mu(1/n), \qquad n = 1, 2, ...,$$
 (5.1)

$$c_3 \mu(\delta) \leqslant \tilde{\omega}_m(\delta) \leqslant c_4 \mu(\delta), \qquad \delta > 0.$$
 (5.2)

Let (5.1) be true. The correctness of the right-hand part of (5.2) for sufficiently large m follows from Theorem 1. For $0 < \delta < 1$, choosing integer n such that $(n+1)^{-1} \le \delta < n^{-1}$, we have by Lemma 3 and inequality (2.2)

$$\mu(\delta) \leq \mu(1/n) \ll E_n(f, \bar{G}) \ll \tilde{\omega}_m(1/n) \ll \tilde{\omega}_m(1/(n+1)) \leq \tilde{\omega}_m(\delta).$$

Hence the correctness of the left-hand part of (5.2) is proved (even for all $m \ge 1$).

Now let (5.2) be satisfied. The right-hand part of the inequality (5.1) follows from Theorem 1. Let us verify the correctness of the left-hand part of this estimate.

Let $P_n \in \mathbb{P}_n$, n = 0, 1, ..., be such that

$$||f-P_n||_{\bar{G}}=E_n(f,\bar{G}).$$

LEMMA 5. If

$$E_n(f, \bar{G}) \leqslant \mu(1/n), \qquad n = 1, 2, ...,$$
 (5.3)

then for sufficiently large $m \ge m_0(\mu, G)$, $z_0 \in L$, $z \in D(z_0, \rho_0/2)$, where $\rho_0 := \rho_{1/n}(z_0)$, and $0 < \delta < \rho_0/2$

$$|P_n^{(m)}(z)| \ll \rho_0^{-m} \mu(1/n), \tag{5.4}$$

$$\omega_{m,G}(P_n,z_0,\delta) \ll \mu(1/n)(\delta/\rho_0)^m. \tag{5.5}$$

Proof. Choose an integer s such that $2^s \le n < 2^{s+1}$. The polynomial P_n can be rewritten in the form

$$P_n(z) = \sum_{j=0}^{s+1} Q_j(z),$$

where

$$Q_{j}(z) := \begin{cases} P_{1}(z), & j = 0; \\ P_{2^{j}}(z) - P_{2^{j-1}}(z), & 1 \leq j \leq s; \\ P_{n}(z) - P_{2^{s}}(z), & j = s + 1. \end{cases}$$

According to (5.3) for polynomials $Q_j(z)$ we have $||Q_j||_{\tilde{G}} \ll \mu(2^{1-j})$, $1 \le j \le s+1$. By the Bernstein-Walsh theorem [15, p. 77] we have

$$||Q_j||_{\overline{D(z_0, \rho_j)}} \ll \mu(2^{-j}),$$

where $\rho_j := \rho_{2^{-j}}(z_0)$. Consequently for $z \in D(z_0, \rho_0/2)$ we obtain

$$||Q_j^{(m)}(z)| \leq \frac{m!}{2\pi} \int_{\partial D(z_0, \, \rho_j)} \frac{|Q_j(\zeta)|}{|\zeta - z|^{m+1}} \, |d\zeta| \leq \mu(2^{-j}) \, \rho_j^{-m}.$$

Therefore, if $z \in D(z_0, \rho_0/2)$ and $m \ge 2$ we have by (2.1) and Lemma 2

$$\begin{aligned} |P_n^{(m)}(z)| &\leq \sum_{j=1}^{s+1} |Q_j^{(m)}(z)| \leq \sum_{j=1}^{s+1} \mu(2^{-j}) \rho_j^{-m} \\ &= \mu(2^{-s-1}) \rho_{s+1}^{-m} \sum_{j=1}^{s+1} \frac{\mu(2^{-j})}{\mu(2^{-s-1})} \left[\frac{\rho_{2^{-s-1}}(z_0)}{\rho_{2^{-j}}(z_0)} \right] \right]^m \\ &\leq \mu(1/n) \rho_0^{-m} \sum_{j=1}^{s+1} 2^{(s-j)c} 2^{(j-s) \, \alpha m} \leq \mu(1/n) \, \rho_0^{-m}, \end{aligned}$$

as soon as $m > c/\alpha$.

Inequality (5.5) immediately follows from estimate (5.4). Indeed, since

$$P_n(z) = \sum_{j=0}^{m-1} \frac{1}{j!} (z - z_0)^j P_n^{(j)}(z_0) + \frac{1}{(m-1)!} \int_{\{z_0, z\}} (z - \zeta)^{m-1} P_n^{(m)}(\zeta) d\zeta$$

according to (5.4) we find

$$\omega_{m,G}(P_n, z_0, \delta) \leqslant \sup_{z \in D(z_0, \delta)} \left| P_n(z) - \sum_{j=0}^{m-1} \frac{1}{j!} (z - z_0)^j P_n^{(j)}(z_0) \right|$$

$$\ll \mu (1/n) (\delta/\rho_0)^m.$$

Thus Lemma 5 is proved.

Let $z_0 \in L$ be an arbitrary point. By our assumption (5.3) holds. Therefore, for polynomials $P_n(z)$, (5.5) is true and, consequently, by Lemma 5 we have

$$\omega_{m,G}(f, z_0, \delta) \leq \omega_{m,G}(f - P_n, z_0, \delta) + \omega_{m,G}(P_n, z_0, \delta)$$

$$\leq E_n(f, \overline{G}) + c_1 \mu (1/n) (\delta/\rho_0)^m.$$

Let s > 1 be such that $\delta := \rho_{1/(sn)}(z_0) < \rho_0/2$ (a more concrete choice of the number $s = s(\mu, G)$ will be specified below).

According to (2.1) and Lemma 2

$$c_1 \mu(1/n)(\delta/\rho_0)^m \le c_2 \mu(1/(sn)) s^c \left[\frac{\rho_{1/(sn)}(z_0)}{\rho_{1/n}(z_0)} \right]^m \le c_3 \mu(1/(sn)) s^{c-\alpha m}.$$

Therefore

$$E_n(f, \bar{G}) \geqslant \omega_{m,L}(f, z_0, \delta) - c_3 \mu(1/(sn)) s^{c-\alpha m}.$$
 (5.6)

By Lemma 1

$$\Psi(\gamma) \subset D(z, \rho_{c_4 \mid \gamma}(z))$$

holds for any arc $\gamma \subset \partial \Delta$ and point $z \in \gamma$.

Thus choosing in (5.6) point z_0 such that

$$\omega_{m,L}(f,z_0,\delta) \geqslant \tilde{\omega}_m[(snc_4)^{-1}]$$

we successively obtain for $m > c/\alpha$

$$E(f, \bar{G}) \geqslant \tilde{\omega}_m [(snc_4)^{-1}] - c_3 \mu [(sn)^{-1}] s^{c-\alpha m} \geqslant \mu [(sn)^{-1}] (c_5 - c_3 s^{c-\alpha m})$$

$$\geqslant c_5 \mu [(sn)^{-1}]/2 \geqslant c_6 \mu (1/n)$$

as soon as $s \ge (2c_3/c_5)^{1/(\alpha m - c)}$.

6. Proof of Theorem 3

Choose α : $0 < \alpha < 1$ and consider the function $f(z) = f_{\alpha}(z) := (z - 1)^{\alpha}$. For this function

$$E_n(f, \bar{D}) \gg n^{-\alpha}, \qquad n = 1, 2,$$
 (6.1)

Indeed, according to Theorem 2 it is sufficient for the proof of (6.1) to establish the double inequality

$$\delta^{\alpha} \ll \tilde{\omega}_{m}(\delta) \ll \delta^{\alpha} \tag{6.2}$$

for $0 < \delta < 1$ and $m \ge 1$.

In fact, the right-hand part of (6.2) is obvious:

$$\tilde{\omega}_m(\delta) \leq \omega_{1,\bar{D}}(f, 1, \delta) = \delta^{\alpha}/2.$$

Now let $p \in \mathbb{P}_{m-1}$ be a polynomial for which

$$\omega_{m, D}(f, 1, \delta) = \|f - p\|_{\overline{D \cap D(1, \delta)}}.$$

We have for $0 < \delta < 1$

$$|\alpha \cdot (\alpha - 1) \cdots (\alpha - m + 1)| (\delta/2)^{\alpha - m}$$

$$= |f^{(m)}(1 - \delta/2)|$$

$$= \frac{m!}{2\pi} \left| \int_{\partial D(1 - \delta/2, \delta/2)} \frac{f(\zeta) - p(\zeta)}{(\zeta + \delta/2 - 1)^{m+1}} d\zeta \right|$$

$$\leq m! (\delta/2)^{-m} \omega_{m, D}(f, 1, \delta).$$

Consequently by (4.4)

$$\tilde{\omega}_m(\delta) \gg \omega_{m,\bar{D}}(f,1,\delta) \gg \delta^{\alpha}$$
.

Thus the relation (6.1) is proved.

Now let us estimate from above the speed of rational approximation of the function f on \bar{D} .

According to the Cauchy formula

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta| = 2} \frac{f(\zeta)}{\zeta - z} d\zeta + \int_{[1, 2]} \frac{h(\zeta)}{\zeta - z} d\zeta, \tag{6.3}$$

where |z| < 1, $h(\zeta) = h_{\alpha}(\zeta) := (1/2\pi i) |\zeta - 1|^{\alpha} (1 - e^{2\pi\alpha i})$.

The first integral in (6.3) can be approximated even by polynomials with rate of geometrical progression. In constructing a rational approximation for the second integral choose q: 0 < q < 1 and consider the system of points

$$\zeta_j := 1 + q^j, \quad j = 0, 1, 2, \dots$$

Since for every integer k

$$\frac{1}{\zeta - z} = R_{k,j}(\zeta, z) + \left(\frac{\zeta_j - \zeta}{\zeta_j - z}\right)^k \frac{1}{\zeta - z},$$
where
$$R_{k,j}(\zeta, z) := \sum_{i=0}^{k-1} \frac{(\zeta_j - \zeta)^i}{(\zeta_i - z)^{i+1}},$$

for $\zeta \in [\zeta_{j+1}, \zeta_j]$ and $z \in D$ we derive

$$\left|\frac{1}{\zeta-z}-R_{k,j}(\zeta,z)\right|=\left|\frac{\zeta_j-\zeta}{\zeta_j-z}\right|^k\frac{1}{|\zeta-z|}\leqslant \frac{(1-q)^k}{|\zeta-z|}.$$

For some integers s and k consider the rational function

$$R(z) := \sum_{i=0}^{s-1} \int_{\left[\zeta_{i+1}, \zeta_{i}\right]} h(\zeta) R_{k,j}(\zeta, z) d\zeta$$

of degree at most sk.

It is easy to see that

$$\left| \int_{[1,2]} \frac{h(\zeta)}{\zeta - z} d\zeta - R(z) \right| \leq \int_{[1,\zeta_i]} \frac{|h(\zeta)|}{|\zeta - z|} |d\zeta| + \sum_{j=0}^{s-1} \int_{[\zeta_{j+1},\zeta_j]} |h(\zeta)|$$

$$\times \left| \frac{1}{\zeta - z} - R_{k,j}(\zeta,z) \right| |d\zeta|$$

$$\leq q^{ss} + (1 - q)^k.$$

Therefore, if we put $s = k = \lfloor n^{1/2} \rfloor$, then the last inequality allows to write for the function f

$$\rho_n(f, \bar{D}) \leqslant \exp\{-c_1 n^{1/2}\}.$$

Now consider the function

$$\varphi(z) := \sum_{k=0}^{\infty} z^{2^k} \exp\{-2^{k/2}\}.$$

By the Hadamard theorem [5, p. 42], $\varphi \in B$. Let *n* be arbitrary, and let the integer *j* be defined by $2^j \le n < 2^{j+1}$. We find

$$\rho_{n}(\varphi, \bar{D}) \leq E_{n}(\varphi, \bar{D}) \leq \max_{z \in D} \left| \sum_{k=j+1}^{\infty} z^{2^{k}} \exp\{-2^{k/2}\} \right|$$
$$\leq \sum_{k=j+1}^{\infty} \exp\{-2^{k/2}\} \leq \exp\{-n^{1/2}\}.$$

It is easy to see that the function $g := f + \varphi$ satisfies (2.4) and (2.5).

ACKNOWLEDGMENTS

It is a pleasure to thank J. Becker, D. Gaier, O. Hübner, and Ch. Pommerenke for some stimulating conversations on the subject matter of this paper.

REFERENCES

- L. V. Ahlfors, "Lectures on Quasiconformal Mappings," Van Nostrand, Princeton, NJ, 1966.
- V. V. Andrievskii, Some properties of continua with a piecewise quasiconformal boundary, Ukrain. Math. Zh. 32 (1980), 435-440 [in Russian]; English translation, Ukrainian Math. J. 32 (1980).
- V. V. Andrievskii, A description of classes of functions with a given rate of decrease of their best uniform polynomial approximations, *Ukrain Math. Zh.* 36 (1984), 602-606 [in Russian]; English translation, *Ukrainian Math. J.* 36 (1984).

- 4. V. I. Belyi, Conformal mappings and the approximation of analytic functions in domains with a quasiconformal boundary, *Mat. Sb.* 102, No. 144 (1977), 331-361 [in Russian]; English translation, *Math. USSR-Sb.* 31 (1977).
- L. BIEBERBACH, "Analytische Fortsetzung," Springer-Verlag, Berlin/Göttingen/Heidelberg, 1955.
- E. M. DYNKIN, On a uniform approximation of functions on the Jordan domain, Sibirsk Mat. Zh. 18 (1977), 775-786 [in Russian]; English translation, Sibererian Math. J. 18 (1977).
- 7. V. K. DZYADYK, "Introduction to the Theory of Uniform Approximation of Functions by Polynomials," Nauka, Moskow, 1977. [In Russian]
- 8. V. K. DZYADYK AND G. A. ALIBEKOV, On the uniform approximation of functions of a complex variable on closed sets with corners, *Mat. Sb.* 75, No. 117 (1968), 502-557 [in Russian]; English translation, *Math. USSR-Sb.* 4 (1968).
- 9. D. GAIER, "Lectures on Complex Approximation," Birkhäuser, Boston/Basel/Stuttgart, 1987.
- 10. V. V. MIMESKOOL, "Constructive Properties of Functions Admitting Smoothness Continuation," Dissertation, Inst. for Appl. Math. and Mech., Ukrainian Acad. of Sciences, Donetsk, 1986. [In Russian]
- 11. CH. POMMERENKE, Problems in complex function theory, Bull. London Math. Soc. 4 (1972), 354-366.
- 12. S. B. STECHKIN, On the order of the best approximation of continuous functions, *Izv. Akad. Nauk SSSR Ser. Mat.* 15 (1951), 219–242. [In Russian]
- 13. P. M. Tamrazov, "Smoothnesses and Polynomial Approximations," Naukova Dumka, Kiev, 1975. [In Russian]
- P. TURAN, On some open problems of approximation theory, J. Approx. Theory 29 (1980), 23-85.
- J. L. Walsh, "Interpolation and Approximation by Rational Functions in the Complex Domain," Amer. Math. Soc., Providence, RI, 1965.